
Simulink Control
Design

®

Reference
Version 1

For Use with Simulink®

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Simulink Control Design Reference
 COPYRIGHT 2004 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: June 2004 Online only New for Version 1.0 (Release 14)

Contents
1
Function Reference

Functions — By Category . 1-2
Linearization Analysis I/Os . 1-2
Operating Points . 1-2
Linearization . 1-3

Functions — Alphabetical List . 1-4

2
Block Reference

Blocks — Alphabetical List . 2-2

Index
i

ii Contents

1

Function Reference

Functions — By Category (p. 1-2) A list of available functions, sorted by category

Functions — Alphabetical List (p. 1-4) A list of available functions, sorted alphabetically

1 Function Reference

1-2
Functions — By Category

Linearization Analysis I/Os

Operating Points

get Get properties of linearization I/Os and operating points

getlinio Get linearization I/O settings for Simulink® model

linio Construct linearization I/O settings for Simulink model

set Set properties of linearization I/Os and operating points

setlinio Assign I/O settings to Simulink model

addoutputspec Add output specification to operating point
specification

copy Create copy of operating point or operating point
specification

findop Find operating points from specifications or
simulation

initopspec Initialize operating point specification values

get Get properties of linearization I/Os and operating
points

getxu Extract states and inputs from operating points

operpoint Create operating point for Simulink model

operspec Create operating point specifications for Simulink
model

set Set properties of linearization I/Os and operating
points

setxu Set states and inputs in operating points

Functions — By Category
Linearization
findop Find operating points from specifications or

simulation

getlinio Get linearization I/O settings for Simulink model

linearize Create linearized model from Simulink model

linio Construct linearization I/O settings for Simulink
model

linoptions Set options for finding operating points and
linearization

operpoint Create operating point for Simulink model

operspec Create operating point specifications for Simulink
model
1-3

1

1-4

Functions — Alphabetical List 1

This section contains function reference pages listed alphabetically.

addoutputspec
1addoutputspecPurpose Add output specification to operating point specification

Graphical
Interface

As an alternative to the addoutputspec function, add output specifications
with the Simulink Control Design GUI. See “Constraining Outputs” on
page 3-25.

Syntax opnew=addoutputspec(op,'block',portnumber)

Description opnew=addoutputspec(op,'block',portnumber) adds an output
specification for a Simulink model to an existing operating point specification,
op, created with operspec. The signal being constrained by the output
specification is indicated by the name of the block, 'block', and the port
number, portnumber, that it originates from. You can edit the output
specification within the new operating point specification object, opnew, to
include the actual constraints or specifications for the signal. Use the new
operating point specification object with the function findop to find operating
points for the model.

This function will automatically compile the Simulink model, given in the
property Model of op, to find the block’s output portwidth.

Example Create an operating point specification for the model magball.

op=operspec('magball')

This returns the object op. Note that there are no outports in this model and no
outputs in the object op.

 Operating Specificaton for the Model magball.
(Time-Varying Components Evaluated at time t=0)

States:

(1.) magball/Controller/Controller
 spec: dx = 0, initial guess: 0
 spec: dx = 0, initial guess: 0
(2.) magball/Magnetic Ball Plant/Current
 spec: dx = 0, initial guess: 7
(3.) magball/Magnetic Ball Plant/dhdt
 spec: dx = 0, initial guess: 0
1-5

addoutputspec
(4.) magball/Magnetic Ball Plant/height
 spec: dx = 0, initial guess: 0.05

Inputs: None

Outputs: None

To add an output specification to the signal between the Controller block and
the Magnetic Ball Plant block, use the function addoutputspec.

newop=addoutputspec(op,'magball/Controller',1)

The output specification is added to the operating point specification object.

 Operating Specificaton for the Model magball.
(Time-Varying Components Evaluated at time t=0)

States:

(1.) magball/Controller/Controller
 spec: dx = 0, initial guess: 0
 spec: dx = 0, initial guess: 0
(2.) magball/Magnetic Ball Plant/Current
 spec: dx = 0, initial guess: 7
(3.) magball/Magnetic Ball Plant/dhdt
 spec: dx = 0, initial guess: 0
(4.) magball/Magnetic Ball Plant/height
 spec: dx = 0, initial guess: 0.05

Inputs: None

Outputs:

(1.) magball/Controller
 spec: none

Edit the output specification to constrain this signal to be 14.

newop.Outputs(1).Known=1, newop.Outputs(1).y=14

MATLAB® displays the final output specification.

 Operating Specificaton for the Model magball.
1-6

addoutputspec
(Time-Varying Components Evaluated at time t=0)

States:

(1.) magball/Controller/Controller
 spec: dx = 0, initial guess: 0
 spec: dx = 0, initial guess: 0
(2.) magball/Magnetic Ball Plant/Current
 spec: dx = 0, initial guess: 7
(3.) magball/Magnetic Ball Plant/dhdt
 spec: dx = 0, initial guess: 0
(4.) magball/Magnetic Ball Plant/height
 spec: dx = 0, initial guess: 0.05

Inputs: None

Outputs:

(1.) magball/Controller
 spec: y = 14

See Also findop, operspec, operpoint
1-7

copy
1copyPurpose Create copy of operating point or operating point specification

Syntax op_point2=copy(op_point1)
op_spec2=copy(op_spec1)

Description op_point2=copy(op_point1) returns a copy of the operating point object
op_point1. You can create op_point1 with the function operpoint.

op_spec2=copy(op_spec1) returns a copy of the operating point specification
object op_spec1. You can create op_spec1 with the function operspec.

Note The command op_point2=op_point1 does not create a copy of
op_point1 but creates a pointer to op_point1. In this case any changes made
to op_point2 will also be made to op_point1.

Example Create an operating point object for the model, magball.

opp=operpoint('magball')

MATLAB displays the operating point.

 Operating Point for the Model magball.
(Time-Varying Components Evaluated at time t=0)

States:

(1.) magball/Controller/Controller
 x: 0
 x: 0
(2.) magball/Magnetic Ball Plant/Current
 x: 7
(3.) magball/Magnetic Ball Plant/dhdt
 x: 0
(4.) magball/Magnetic Ball Plant/height
 x: 0.05

Inputs: None
1-8

copy
Create a copy of this object, opp.

new_opp=copy(opp)

MATLAB displays an exact copy of the object.

 Operating Point for the Model magball.
(Time-Varying Components Evaluated at time t=0)

States:

(1.) magball/Controller/Controller
 x: 0
 x: 0
(2.) magball/Magnetic Ball Plant/Current
 x: 7
(3.) magball/Magnetic Ball Plant/dhdt
 x: 0
(4.) magball/Magnetic Ball Plant/height
 x: 0.05

Inputs: None

See Also operpoint, operspec
1-9

findop
1findopPurpose Find operating points from specifications or simulation

Graphical
Interface

As an alternative to the findop function, create operating points from
specifications or simulation within the Operating Points node of the Simulink
Control Design GUI. See “Computing Operating Points from Specifications” on
page 3-21 and “Extracting Operating Points from Simulation” on page 3-25.

Remarks Finding operating points from specifications using the findop function is the
same as trimming, or performing trim analysis. Use the findop function
instead of the Simulink trim function when working with Simulink Control
Design operating point objects and specification objects.

Syntax [op_point,op_report]=findop('model',op_spec)
[op_point,op_report]=findop('model',op_spec,options)
op_point=findop('model',times)

Description [op_point,op_report]=findop('model',op_spec) finds an operating point,
op_point, of the model, 'model', from specifications given in opspec.

[op_point,op_report]=findop('model',op_spec,options) finds an
operating point, op_point, of the model, 'model', from specifications given in
op_spec. Several options for the optimization are specified in the options
object, which you can create with the function linoptions.

The input to findop, op_spec, is an operating point specification object. Create
this object with the function operspec. Specifications on the operating points,
such as minimum and maximum values, initial guesses, and known values, are
specified by editing op_spec directly or by using get and set. To find
equilibrium, or steady-state, operating points, set the SteadyState property of
the states and inputs in op_spec to 1. The findop function uses optimization to
find operating points that closely meet the specifications in op_spec. By
default, findop uses the optimizer graddescent_elim. To use a different
optimizer, change the value of OptimizerType in options using the
linoptions function.

A report object, op_report, gives information on how closely findop meets the
specifications. The function findop displays the report automatically, even if
the output is suppressed with a semi-colon. To turn off the display of the report,
set DisplayReport to 'off' in options using the function linoptions.
1-10

findop
op_point=findop('model',times) runs a simulation of the model, 'model',
and extracts operating points from the simulation at the snapshot times given
in the vector, times. An operating point object, op_point, is returned.

For all syntaxes, the output of findop is an operating point object. Use this
object with the function linearize to create linearized models of Simulink
models. The operating point object has the following properties:

• “Model” on page 1-11

• “States” on page 1-11

• “Inputs” on page 1-11

• “Time” on page 1-12

Model
Model specifies the name of the Simulink model that this operating point object
refers to.

States
States describes the operating points of states in the Simulink model. The
States property is a vector of state objects that contains the operating point
values of the states. There is one state object per block that has a state in the
Simulink model. The States object has the following properties:

Inputs
Inputs is a vector of input objects that contains the input levels at the
operating point. There is one input object per root level inport block in the
Simulink model. The Inputs object has the following properties:

Nx Number of states in the block. This property is
read-only.

Block Block that the states are associated with

x Vector containing the values of states in the block

Description String describing the block
1-11

findop
Time
Time specifies the time at which any time-varying functions in the model are
evaluated.

The operating point report object, returned when finding operating points from
specifications, has the following properties:

• Model
• Inputs
• Outputs
• States
• Time
• TerminationString
• OptimizationOutput

Of these properties, Model, Inputs, Outputs, States, and Time contain the
same information as the operating point specification object, with the addition
of dx values for the States and yspec values, or desired y values, for the
Outputs. The TerminationString contains the message that findop displays
after terminating the optimization. The OptimizationOutput property
contains the same properties returned in the output variable of the
Optimization Toolbox functions fmincon, fminsearch, and lsqnonlin. See the
Optimization Toolbox documentation for more information. If you do not have
the Optimization Toolbox, you can access the documentation at
http://www.mathworks.com/access/helpdesk/help/toolbox/optim/optim.
shtml

 Examples Example 1
Create an operating point specification object for the model magball with the
operspec function.

op_spec=operspec('magball');

Block Inport block that the input vector is associated with

PortWidth Width of the corresponding inport

u Vector containing the input level at the operating point

Description String describing the input
1-12

findop
Edit the operating point specification object to reflect any specifications on the
operating points such as minimum and maximum values, initial guesses, and
known values. This example uses the default specifications in which
SteadyState is set to 1 for all states, specifying that an equilibrium operating
point is desired.

Find the equilibrium operating points with the findop function.

op_point=findop('magball',op_spec)

This returns an operating point object, op_point.

 Operating Point for the Model magball.
(Time-Varying Components Evaluated at time t=0)

States:

(1.) magball/Controller/Controller
 x: 0
 x: -2.56e-006
(2.) magball/Magnetic Ball Plant/Current
 x: 7
(3.) magball/Magnetic Ball Plant/dhdt
 x: 0
(4.) magball/Magnetic Ball Plant/height
 x: 0.05

Inputs: None

MATLAB displays the name of the model, the time at which any time-varying
functions in the model are evaluated, the names of blocks containing states,
and the operating point values of the states. In this example there are four
blocks that contain states in the model and four entries in the States object.
The first entry contains two states. MATLAB also displays the Inputs field
although there are no inputs in this model. To view the properties of op_point
in more detail, use the get function.

MATLAB also displays the operating point report object.

 Operating Point Search Report for the Model magball.
(Time-Varying Components Evaluated at time t=0)
1-13

findop
Operating condition specifications were successully met.

States:

(1.) magball/Controller/Controller
 x: 0 dx: 0 (0)
 x: -2.56e-006 dx: 0 (0)
(2.) magball/Magnetic Ball Plant/Current
 x: 7 dx: 0 (0)
(3.) magball/Magnetic Ball Plant/dhdt
 x: 0 dx: -1.78e-015 (0)
(4.) magball/Magnetic Ball Plant/height
 x: 0.05 dx: 0 (0)

Inputs: None

Outputs: None

In addition to the operating point values, the report shows how closely the
specifications were met. In the report above, the dx values are all small and
close to the desired dx values of 0 indicating that an equilibrium or steady-state
value was found.

Example 2
To extract an operating point from a simulation at the times 10 and 20, you can
use findop in the following way.

op_point=findop('magball',[10,20])

This returns the message

There is more than one operating point. Select an element
in the vector of operating points to display.

To display the first operating point, enter the command

op_point(1)

This should display

 Operating Point for the Model magball.
(Time-Varying Components Evaluated at time t=10)
1-14

findop
States:

(1.) magball/Controller/Controller
 x: -4.82e-010
 x: -2.56e-006
(2.) magball/Magnetic Ball Plant/Current
 x: 7
(3.) magball/Magnetic Ball Plant/dhdt
 x: 2.6e-006
(4.) magball/Magnetic Ball Plant/height
 x: 0.05

Inputs: None

To display the second operating point, enter

op_point(2)

This returns

 Operating Point for the Model magball.
(Time-Varying Components Evaluated at time t=20)

States:

(1.) magball/Controller/Controller
 x: -5.5e-010
 x: -2.56e-006
(2.) magball/Magnetic Ball Plant/Current
 x: 7
(3.) magball/Magnetic Ball Plant/dhdt
 x: 2.54e-006
(4.) magball/Magnetic Ball Plant/height
 x: 0.05

Inputs: None

See Also operspec, linearize
1-15

get
1getPurpose Get properties of linearization I/Os and operating points

Graphical
Interface

As an alternative to the get function, view properties of linearization I/Os and
operating points with the Simulink Control Design GUI. See “Inspecting
Analysis I/Os” on page 3-15 and “Specifying Operating Points” on page 3-18.

Syntax get(ob)
get(ob,'PropertyName')
ob.PropertyName

Description get(ob) displays all properties and corresponding values of the object, ob,
which can be a linearization I/O object, an operating point object, or an
operating point specification object. Create ob using findop, getlinio, linio,
operpoint, or operspec.

get(ob,'PropertyName') returns the value of the property, PropertyName,
within the object, ob. The object, ob, can be a linearization I/O object, an
operating point object, or an operating point specification object. Create ob
using findop, getlinio, linio, operpoint, or operspec.

ob.PropertyName is an alternative notation for displaying the value of the
property, PropertyName, of the object, ob. The object, ob, can be a linearization
I/O object, an operating point object, or an operating point specification object.
Create ob using findop, getlinio, linio, operpoint, or operspec.

Examples Create an operating point object, op, for the Simulink model, magball.

op=operpoint('magball');

Get a list of all object properties using the get function with the object name as
the only input.

get(op)

This returns the properties of op and their current values.

 Model: 'magball'
 States: [4x1 opcond.StatePoint]
 Inputs: []
 Time: 0
1-16

get
To view the value of a particular property of op, supply the property name as
an argument to get. For example, to view the name of the model associated
with the operating point object, type

V=get(op,'Model')

which returns

V =
magball

Since op is a structure, you can also view any properties or fields using
dot-notation, as in this example.

W=op.States

This returns a vector of objects containing information about the states in the
operating point.

(1.) magball/Controller/Controller
 x: 0
 x: 0
(2.) magball/Magnetic Ball Plant/Current
 x: 7
(3.) magball/Magnetic Ball Plant/dhdt
 x: 0
(4.) magball/Magnetic Ball Plant/height
 x: 0.05

Use get to view details of W. For example

get(W(2),'x')

returns

ans =
7.0036

See Also findop, getlinio, linio, operpoint, operspec, set
1-17

getlinio
1getlinioPurpose Get linearization I/O settings for Simulink model

Graphical
Interface

As an alternative to the getlinio function, view linearization I/Os in the
Analysis I/Os panel of the Linearizations node within the Simulink Control
Design GUI. See “Inspecting Analysis I/Os” on page 3-15.

Syntax io = getlinio('sys')

Description io = getlinio('sys') finds all linearization annotations in the Simulink
model, sys, and returns a vector of objects, io. Each object represents a
linearization annotation in the model and is associated with an output port of
a Simulink block. Before running getlinio, use the right click menu to insert
the linearization annotations, or I/Os, on the signal lines of the model diagram.

Each object within the vector, io, has the following properties:

You can edit this I/O object to change its properties. Alternatively, you can
change the properties of io using the set function. To upload an edited I/O
object to the Simulink model diagram, use the setlinio function. Use I/O
objects with the function linearize to create linear models.

Active 'on' when the I/O will be used for linearization and 'off'
otherwise

Block Name of the block the I/O is associated with

OpenLoop 'on' when the feedback loop at the I/O is open and 'off'
when it is closed

PortNumber Integer referring to the output port the I/O is associated with

Type Linearization I/O type
- 'in': linearization input point

- 'out': linearization output point

- 'inout': linearization input then output point

- 'outin': linearization output then input point

Description String description of the I/O object
1-18

getlinio
Example Before creating a vector of I/O objects using getlinio, you must add
linearization annotations representing the I/Os, such as input points or output
points, to a Simulink model.

Open the Simulink model magball by typing

magball

at the MATLAB prompt. Right-click the signal line between the Magnetic Ball
Plant and the Controller. Select Linearization Points -> Input Point from the
menu to place an input point on this signal line. A small arrow pointing
towards a small circle just above the signal line represents the input point.
Right-click the signal line after the Magnetic Ball Plant. Select Linearization
Points -> Output Point from the menu to place an output point on this signal
line. A small arrow pointing away from a small circle just above the signal line
represents the output point. The model diagram should now look like that in
the following figure.
1-19

getlinio
To create a vector of I/O objects for this model, type

io=getlinio('magball')

This returns a formatted display of the linearization I/Os.

 Linearization IOs:

Block magball/Controller, Port 1 is marked with the following
properties:
 - No Loop Opening
 - An Input Perturbation

Input Point Output Point

Linearization Annotations
1-20

getlinio
Block magball/Magnetic Ball Plant, Port 1 is marked with the
following properties:
 - An Output Measurement
 - No Loop Opening

There are two entries in the vector, io, representing the two linearization
annotations previously set in the model diagram. MATLAB displays the name
of the block associated with the I/O, the port number associated with the I/O,
the type of IO (input perturbation or output measurement referring to an input
point or output point respectively), and whether the IO is also a loop opening.
By default, the I/Os have no loop openings. Display the properties of each I/O
object in more detail using the get function.

 See Also get, linearize, linio, set, setlinio
1-21

getlinplant
1getlinplantPurpose Compute open loop plant model from Simulink diagram

Syntax [sysp,sysc] = getlinplant(block,op)
[sysp,sysc] = getlinplant(block,op,options)

Description [sysp,sysc] = getlinplant(block,op) Computes the open loop plant seen
by a Simulink block labeled block (where block specifies the full path to the
block). The plant model, sysp, and linearized block, sysc, are linearized at the
operating point op.

[sysp,sysc] = getlinplant(block,op,options) Computes the open loop
plant seen by a Simulink block labeled block, using the linearization options
specified in options.

Example To compute the open loop model seen by the Controller block in the Simulink
model magball, first create an operating point object using the function findop.
In this case the operating point is found from simulation of the model.

op=findop('magball',20);

Next, compute the open loop model seen by the block magball/Controller,
with the getlinplant function.

[sysp,sysc]=getlinplant('magball/Controller',op)

The output variable sysp gives the open loop plant model as shown below.

a =
 magball/Magn magball/Magn magball/Magn
 magball/Magn -100 0 0
 magball/Magn -2.798 0 195.7
 magball/Magn 0 1 0

b =
 magball/Cont
 magball/Magn 50
 magball/Magn 0
 magball/Magn 0

1-22

getlinplant
c =
 magball/Magn magball/Magn magball/Magn
 Controller (0 0 -1

d =
 magball/Cont
 Controller (0

Continuous-time model.

See Also findop, linoptions, operpoint, operspec
1-23

getxu
1getxuPurpose Extract states and inputs from operating points

Syntax x = getxu(op_point)
[x,u] = getxu(op_point)
[x,u,xstruct] = getxu(op_point)

Description x = getxu(op_point) extracts a vector of state values, x, from the operating
point object, op_point. The ordering of states in x is the same as that used by
Simulink.

[x,u] = getxu(op_point) extracts a vector of state values, x, and a vector of
input values, u, from the operating point object, op. The ordering of states in
x, and inputs in u, is the same as that used by Simulink.

[x,u,xtruct] = getxu(op_point) extracts a vector of state values, x, a
vector of input values, u, and a structure of state values, xstruct, from the
operating point object, op_point. The structure of state values, xstruct, has
the same format as that returned from a Simulink simulation. The ordering of
states in x and xtruct, and inputs in u, is the same as that used by Simulink.

Example Create an operating point object for the magball model by typing

op=operpoint('magball');

To view the states within this operating point, type

op.States

which returns

(1.) magball/Controller/Controller
 x: 0
 x: 0
(2.) magball/Magnetic Ball Plant/Current
 x: 7
(3.) magball/Magnetic Ball Plant/dhdt
 x: 0
(4.) magball/Magnetic Ball Plant/height
 x: 0.05
1-24

getxu
To extract a vector of state values, with the states in the ordering that is
compatible with Simulink, along with inputs and a state structure, type

[x,u,xstruct]=getxu(op)

This returns

x =
 0.0500
 0
 0
 7.0036
 0

u =
 []

xstruct =
 time: 0
 signals: [1x4 struct]

View xstruct in more detail by typing

xstruct.signals

This displays

1x4 struct array with fields:
 values
 dimensions
 label
 blockname

View each component of the structure individually. For example:

xstruct.signals(1).values

ans =

 0
 0

or
1-25

getxu
xstruct.signals(2).values

ans =

 7.0036

You can import these vectors and structures into Simulink as initial conditions
or input vectors, or use them with setxu, to set state and input values in
another operating point.

See Also operpoint, operspec
1-26

initopspec
1initopspecPurpose Initialize operating point specification values

Graphical
Interface

As an alternative to the initopspec function, initialize operating point
specification values in the Create Operating Points panel in the Operating
Points node within the Simulink Control Design GUI. See “Computing
Operating Points from Specifications” on page 3-21.

Syntax opnew=initopspec(opspec,oppoint)
opnew=initopspec(opspec,x,u)
opnew=initopspec(opspec,xstruct,u)

Description opnew=initopspec(opspec,oppoint) initializes the operating point
specification object, opspec, with the values contained in the operating point
object, oppoint. The function returns a new operating point specification
object, opnew. Create opspec with the function operspec. Create oppoint with
the function operpoint or findop.

opnew=initopspec(opspec,x,u) initializes the operating point specification
object, opspec, with the values contained in the state vector, x, and the input
vector, u. The function returns a new operating point specification object,
opnew. Create opspec with the function operspec. You can use the function
getxu to create x and u with the correct ordering.

opnew=initopspec(opspec,xstruct,u) initializes the operating point
specification object, opspec, with the values contained in the state structure,
xstruct, and the input vector, u. The function returns a new operating point
specification object, opnew. Create opspec with the function operspec. You can
use the function getxu to create xstruct and u with the correct ordering.
Alternatively, xstruct, can be saved to the MATLAB workspace after a
simulation of the model. See the Simulink documentation for more information
on these structures.

Example Create on operating point using findop by simulating the magball model and
extracting the operating point after 20 time units.

oppoint=findop('magball',20)

This returns the following operating point.
1-27

initopspec
 Operating Point for the Model magball.
(Time-Varying Components Evaluated at time t=20)

States:

(1.) magball/Controller/Controller
 x: 5.28e-009
 x: -2.56e-006
(2.) magball/Magnetic Ball Plant/Current
 x: 6.99
(3.) magball/Magnetic Ball Plant/dhdt
 x: -2.62e-005
(4.) magball/Magnetic Ball Plant/height
 x: 0.05

Inputs: None

Use these operating point values as initial values in an operating point
specification object.

opspec=operspec('magball');
newopspec=initopspec(opspec,oppoint)

The new operating point specification object is displayed.

 Operating Specificaton for the Model magball.
(Time-Varying Components Evaluated at time t=0)

States:

(1.) magball/Controller/Controller
 spec: dx = 0, initial guess: 5.28e-009
 spec: dx = 0, initial guess: -2.56e-006
(1.) magball/Magnetic Ball Plant/Current
 spec: dx = 0, initial guess: 6.99
(1.) magball/Magnetic Ball Plant/dhdt
 spec: dx = 0, initial guess: -2.62e-005
(1.) magball/Magnetic Ball Plant/height
 spec: dx = 0, initial guess: 0.05

Inputs: None
1-28

initopspec

Outputs: None

You can now use this object to find operating points by optimization.

See Also findop, getxu, operpoint, operspec
1-29

linearize
1linearizePurpose Create linearized model from Simulink model

Graphical
Alternative

As an alternative to the linearize function, create linearized models using the
Linearizations node of the Simulink Control Design GUI. See “Linearizing the
Model” on page 3-29.

Syntax lin=linearize('sys',op,io)
lin=linearize('sys',op,io,options)
lin_block=linearize('sys',op,'blockname')
lin=linearize('sys',op)
lin=linearize('sys',op,options)
[lin,op] = linearize('sys',snapshottimes);

Description lin=linearize('sys',op,io) takes a model name, 'sys', an operating point
object, op, and an I/O object, io, as inputs and returns a linear time-invariant
state-space model, lin. The operating point object is created with the function
operpoint or findop. The linearization I/O object is created with the function
getlinio or linio. Both op and io must be associated with the same Simulink
model, sys.

lin=linearize('sys',op,io,options) takes a model name, 'sys', an
operating point object, op, an I/O object, io, and a linearization options object,
options, as inputs and returns a linear time-invariant state-space model, lin.
The operating point object is created with the function operpoint or findop.
The linearization I/O object is created with the function getlinio or linio.
Both op and io must be associated with the same Simulink model, sys. The
linearization options object is created with the function linoptions and
contains several options for linearization.

lin_block=linearize('sys',op,'blockname') takes a model name, 'sys',
an operating point object, op, and the name of a block in the model,
'blockname', as inputs and returns lin_block, a linear time-invariant
state-space model of the named block. The operating point object is created
with the function operpoint or findop. Both op and 'blockname' must be
associated with the same Simulink model, sys. You can also supply a fourth
argument, options, to provide options for the linearization. Create options
with the function linoptions.
1-30

linearize
lin=linearize('sys',op) creates a linearized model, lin, of the system
'sys' at the operating point, op. Root-level inport and outport blocks in sys are
used as inputs and outputs for linearization. The operating point object, op, is
created with the function operpoint or findop. You can also supply a third
argument, options, to provide options for the linearization. Create options
with the function linoptions.

lin=linearize('sys',op,options) is the form of the linearize function
that is used with numerical-perturbation linearization. The function returns a
linear time-invariant state-space model, lin, of the entire model, sys. The
operating point object, op, is created with the function operpoint or findop.
The LinearizationAlgorithm option must be set to 'numericalpert' within
options for numerical-perturbation linearization to be used. Create the
variable options with the linoptions function. The function uses inport and
outport blocks in the model as inputs and outputs for linearization.

[lin,op] = linearize('sys',snapshottimes); creates operating points for
the linearization by simulating the model, 'sys', and taking snapshots of the
system’s states and inputs at the times given in the vector snapshottimes. The
function returns lin, a set of linear time-invariant state-space models
evaluated and op, the set of operating point objects used in the linearization.
You can specify input and output points for linearization by providing an
additional argument such as a linearization I/O object created with getlinio or
linio, or a block name. If an I/O object or block name is not supplied the
linearization will use root-level inport and outport blocks in the model. You can
also supply an additional argument, options, to provide options for the
linearization. Create options with the function linoptions.

Algorithms Linearization algorithm options are set with the function linoptions and
passed to the function linearize as an optional argument.

Example Open the Simulink model, magball, and insert linearization annotations as
shown in the following figure.
1-31

linearize
Create an I/O object based on the linearization annotations, create an
operating point specification object for the model, and then find the operating
point using findop.

io=getlinio('magball');
op=operspec('magball');
op=findop('magball',op);

Compute a linear model of the magball system, based on the linearization I/Os,
io, and defined about the operating point, op, with the command

lin=linearize('magball',op,io)

Linearization Annotations
1-32

linearize
which returns

a =
 magball/Magn magball/Magn magball/Magn
 magball/Magn 0 0 1
 magball/Magn 0 -100 0
 magball/Magn 196.2 -2.801 0

b =
 magball/Cont
 magball/Magn 0
 magball/Magn 50
 magball/Magn 0

c =
 magball/Magn magball/Magn magball/Magn
 magball/Magn 1 0 0

d =
 magball/Cont
 magball/Magn 0

Continuous-time model.

The matrices, a, b, c, and d are the state-space matrices of the linear system
given by the following equations

where x(t) is a vector of states and u(t) is a vector of inputs to the system.

You can view the linearized model, lin, with the LTI Viewer

ltiview(lin)

which produces the following plot.

x· t() ax t() bu t()
y t()

+
cx t() du t()+

=
=

1-33

linearize
See Also findop, getlinio, operpoint, operspec, linio, linoptions, ltiview
1-34

linio
1linioPurpose Construct linearization I/O settings for Simulink model

Graphical
Alternative

As an alternative to the linio function, create linearization I/O settings by
using the right-click menu on the model diagram. See “Selecting Linearization
Points” on page 3-10.

Syntax io=linio('blockname',portnum)
io=linio('blockname',portnum,type)
io=linio('blockname',portnum,type,openloop)

Description io=linio('blockname',portnum) creates a linearization I/O object for the
signal that originates from the outport with port number, portnum, of the block,
'blockname', in a Simulink model. The default I/O type is 'in', and the default
OpenLoop property is 'off'. Use io with the function linearize to create
linearized models.

io=linio('blockname',portnum,type) creates a linearization I/O object for
the signal that originates from the outport with port number, portnum, of the
block, 'blockname', in a Simulink model. The linearization I/O has the type
given by type. A list of available types is given below. The default OpenLoop
property is 'off'. Use io with the function linearize to create linearized
models.

io=linio('blockname',portnum,type,openloop) creates a linearization I/O
object for the signal that originates from the outport with port number,
portnum, of the block, 'blockname', in a Simulink model. The linearization I/O
has the type given by type and the open loop status is given by openloop. A list
of available types is given below. The openloop property is set to 'off' when
the I/O is not an open loop point and is set to 'on' when the I/O is an open loop
point. Use io with the function linearize to create linearized models.

Available linearization I/O types are

• 'in', linearization input point

• 'out', linearization output point

• 'inout', linearization input then output point

• 'outin', linearization output then input point

• 'none', no linearization input/output point
1-35

linio
To upload the settings in the I/O object to the Simulink model, use the
setlinio function.

Example Create a linearization I/O setting for the signal line originating from the
Controller block of the magball model.

io(1)=linio('magball/Controller',1)

This displays

 Linearization IOs:

Block magball/Controller, Port 1 is marked with the following
properties:
 - No Loop Opening
 - An Input Perturbation

By default, this I/O is an input point. Create a second I/O setting within the
object, io. This I/O originates from the Magnetic Ball Plant block, is an output
point, and is also an open loop point.

io(2)=linio('magball/Magnetic Ball Plant',1,'out','on')

The new object, io, is displayed.

 Linearization IOs:

Block magball/Controller, Port 1 is marked with the following
properties:
 - No Loop Opening
 - An Input Perturbation

Block magball/Magnetic Ball Plant, Port 1 is marked with the
following properties:
 - An Output Measurement
 - A Loop Opening

See Also getlinio, linearize, setlinio
1-36

linoptions
1linoptionsPurpose Set options for linearization and finding operating points

Graphical
Interface

As an alternative to the linoptions function, set options for linearization and
finding operating points with the Simulink Control Design GUI. See
“Linearizing Discrete-Time and Multi-Rate Models” on page 3-31 and
“Extracting Operating Points from Simulation” on page 3-25.

Syntax opt=linoptions
opt=linoptions('Property1','Value1','Property2','Value2',...)

Description opt=linoptions creates a linearization options object with the default
settings. The variable, opt, is passed to the functions findop and linearize to
specify options for finding operating points and linearization.

opt=linoptions('Property1','Value1','Property2','Value2',...)
creates a linearization options object, opt, in which the option given by
Property1 is set to the value given in Value1, the option given by Property2 is
set to the value given in Value2, etc. The variable, opt, is passed to the
functions findop and linearize to specify options for finding operating points
and linearization.

 The following options can be set with linoptions:

LinearizationAlgorithm Set to 'numericalpert' (default is 'blockbyblock') to enable
numerical-perturbation linearization (as in Simulink 3.0) where root
level inports and states are numerically perturbed. Linearization
annotations are ignored and root level inports and outports are used
instead.

SampleTime The time at which the signal is sampled. Nonzero for discrete systems,
0 for continuous systems, -1 (default) to use the longest sample time
that contributes to the linearized model.

BlockReduction Set to 'on' (default) to eliminate from the linearized model, blocks that
are not in the path of the linearization, as in the following figure. Set to
'off' to include these blocks in the linearized model.
1-37

linoptions
IgnoreDiscreteStates Set to 'on' to remove any discrete states from the linearization. Set
to 'off' (default) to include discrete states.

NumericalPertRel Set the perturbation level for obtaining the linear model (default
value is 1e-5). The perturbation of the system’s states is specified by

The perturbation of the system’s inputs is specified by

NumericalXPert Individually set the perturbation levels for the system's states.

NumericalUPert Individually set the perturbation levels for the system's inputs.

OptimizationOptions Set options for use with the optimization algorithms. These options
are the same as those set with optimset. See the Optimization
Toolbox documentation for more information on these algorithms. If
you do not have the Optimization Toolbox, you can access the
documentation at
http://www.mathworks.com/access/helpdesk/help/toolbox/optim
/optim.shtml

OptimizerType Set optimizer type to be used by trim optimization if the
Optimization Toolbox is installed. The available optimizer types are

NumericalPertRel+1e 3– NumericalPertRel x××

NumericalPertRel+1e 3– NumericalPertRel u××
1-38

linoptions
See Also findop, linearize

• graddescent_elim, the default optimizer, based on the
Optimization Toolbox function fmincon, enforces an equality
constraint to force time derivatives of states to be zero (dx/dt=0,
x(k+1)=x(k)) and constraints on output signals. This optimizer
fixes states, x, and inputs, u, by not allowing these variables to be
optimized.

• graddescent, enforces an equality constraint to force time
derivatives of states to be zero (dx/dt=0, x(k+1)=x(k)) and
constraints on output signals. Minimize the error between the
desired (known) values of states, x, inputs, u, and outputs, y. If there
are no constraints on x, u, or y, findop will attempt to minimize the
deviation between the initial guesses for x and u and the trimmed
values.

• lsqnonlin fixes states, x, and inputs, u, by not allowing these
variables to be optimized. The algorithm then tries to minimize the
error in dx/dt and outputs, y.

• simplex uses the same cost function as lsqnonlin with the
fminsearch optimization routine.

See the Optimization Toolbox documentation for more information on
these algorithms. If you do not have the Optimization Toolbox, you
can access the documentation at www.mathworks.com/support/.

DisplayReport Set to 'on' to display the operating point summary report when
running findop. Set to 'off' to suppress the display of this report
1-39

operpoint
1operpointPurpose Create operating point for Simulink model

Graphical
Interface

As an alternative to the operpoint function, create operating points in the
Operating Points node of the Simulink Control Design GUI. See “Specifying
Operating Points” on page 3-18.

Syntax op = operpoint('sys')

Description op = operpoint('sys') returns an object, op, containing the operating point
of a Simulink model, sys. Use the object with the function linearize to create
linearized models. The operating point object properties are

• “Model” on page 1-40

• “States” on page 1-40

• “Inputs” on page 1-41

• “Time” on page 1-41

Edit the properties of this object directly or with the set function.

Model
Model specifies the name of the Simulink model that this operating point object
refers to.

States
States describes the operating points of states in the Simulink model. The
States property is a vector of state objects that contains the operating point
values of the states. There is one state object per block that has a state in the
Simulink model. The States object has the following properties:

Nx Number of states in the block. This property is
read-only.

Block Block that the states are associated with

x Vector containing the values of states in the block

Description String describing the block
1-40

operpoint
Inputs
Inputs is a vector of input objects that contains the input levels at the
operating point. There is one input object per root level inport block in the
Simulink model. The Inputs object has the following properties:

Time
Time specifies the time at which any time-varying functions in the model are
evaluated.

Example To create an operating point object for the Simulink model magball, type

op = operpoint('magball')

which returns

 Operating Point for the Model magball.
(Time-Varying Components Evaluated at time t=0)

States:

(1.) magball/Controller/Controller
 x: 0
 x: 0
(2.) magball/Magnetic Ball Plant/Current
 x: 7
(3.) magball/Magnetic Ball Plant/dhdt
 x: 0
(4.) magball/Magnetic Ball Plant/height
 x: 0.05

Inputs: None

Block Inport block that the input vector is associated with

PortWidth Width of the corresponding inport

u Vector containing the input level at the operating point

Description String describing the input
1-41

operpoint
MATLAB displays the name of the model, the time at which any time-varying
functions in the model are evaluated, the names of blocks containing states,
and the values of the states at the operating point. In this example there are
four blocks that contain states in the model and four entries in the States
object. The first entry contains two states. MATLAB also displays the Inputs
although there are not any in this model. To view the properties of op in more
detail, use the get function.

See Also get, linearize, operspec, set
1-42

operspec
1operspecPurpose Create operating point specifications for Simulink model

Graphical
Alternative

As an alternative to the operspec function, create operating point
specifications in the Operating Points node of the Simulink Control Design
GUI. See “Computing Operating Points from Specifications” on page 3-21.

Syntax op=operspec('sys')

Description op = operspec('sys') returns an operating point specification object, op, for
a Simulink model, sys. Edit the default operating point specifications directly
or use get and set. Use the operating point specifications object with the
function findop to find operating points based on the specifications. Use these
operating points with the function linearize to create linearized models.

The operating point specification object properties are

• “Model” on page 1-43

• “States” on page 1-43

• “Inputs” on page 1-45

• “Time” on page 1-45

• “Outputs” on page 1-45

Use the set function to edit the properties of this object before running findop.

Model
Model is the name of the Simulink model that this operating point specification
object is associated with.

States
States describes the operating point specifications for states in the Simulink
model. The States property is a vector of state objects that each contain
specifications for particular states. There is one state specification object per
block that has a state in the model. The States object has the following
properties:
1-43

operspec
Block Block that the states are associated with

x Vector containing values of states in the block. Set
the corresponding value of Known to 1 when these
values are known operating point values. Set the
corresponding values of Known to 0 when these values
are initial guesses for the operating point values. The
default value of x is the initial condition value for the
state.

Nx Number of states in the block. This property is
read-only.

Known Vector of values set to 1 for states whose operating
points are known exactly and set to 0 for states whose
operating points are not known exactly. Set the
operating point values themselves in the x property.

SteadyState Vector of values set to 1 for states whose operating
points should be at equilibrium and set to 0 for states
whose operating points are not at equilibrium. The
default value of SteadyState is 1.

Min Vector containing the minimum values of the
corresponding state’s operating point

Max Vector containing the maximum values of the
corresponding state’s operating point

Description String describing the block
1-44

operspec
Inputs
Inputs is a vector of input specification objects that contains specifications for
the input levels at the operating point. There is one input specification object
per root level inport block in the Simulink model. The Inputs object has the
following properties:

Time
Time specifies the time at which any time-varying functions in the model are
evaluated.

Outputs
Outputs is a vector of output specification objects that contains the
specifications for the output levels at the operating point. There is one output
specification object per root level outport block in the Simulink model. To
constrain additional outputs, use the addoutputspec function to add an
another output specification to the operating point specification object. The
Outputs object has the following properties:

Block The inport block that the input vector is associated with

PortWidth Width of the corresponding inport

u Vector containing values of inputs. Set the corresponding
value of Known to 1 when these values are known operating
point values. Set the corresponding values of Known to 0 when
these values are initial guesses for the operating point values.

Known Vector of values set to 1 for inputs whose operating points are
known exactly and set to 0 for inputs whose operating points
are not known exactly. Set the operating point values
themselves in the u property.

Min Vector containing the minimum values of the corresponding
input’s operating point

Max Vector containing the maximum values of the corresponding
input’s operating point

Description String describing the input
1-45

operspec
Example To create an operating point specification object for the Simulink model
magball, type

op = operspec('magball')

which returns

 Operating Specificaton for the Model magball.
(Time-Varying Components Evaluated at time t=0)

States:

(1.) magball/Controller/Controller
 spec: dx = 0, initial guess: 0
 spec: dx = 0, initial guess: 0
(2.) magball/Magnetic Ball Plant/Current
 spec: dx = 0, initial guess: 7
(3.) magball/Magnetic Ball Plant/dhdt

Block Outport block that the output vector is associated with

PortWidth Width of the corresponding outport

PortNumber Port number that the output is associated with

y Vector containing values of outputs. Set the corresponding
value of Known to 1 when these values are known operating
point values. Set the corresponding values of Known to 0 when
these values are initial guesses for the operating point values.

Known Vector of values set to 1 for outputs whose operating points are
known exactly and set to 0 for outputs whose operating points
are not known exactly. Set the operating point values
themselves in the y property.

Min Vector containing the minimum values of the corresponding
output’s operating point

Max Vector containing the maximum values of the corresponding
output’s operating point

Description String describing the output
1-46

operspec
 spec: dx = 0, initial guess: 0
(4.) magball/Magnetic Ball Plant/height
 spec: dx = 0, initial guess: 0.05

Inputs: None

Outputs: None

MATLAB displays the name of the model, the time at which any time-varying
functions in the model are evaluated, the names of blocks containing states,
default operating point values and initial guesses (based on initial conditions
of the states), and steady-state specifications. In this example there are four
blocks that contain states in the model and four entries in the States object.
The first entry contains two states. By default, MATLAB sets the SteadyState
property to 1 and the upper and lower bounds on the operating points to Inf
and -Inf respectively. MATLAB also displays the Inputs and Outputs
although there are not any in this model. To view the properties of op in more
detail, use the get function.

See Also addoutputspec, findop, get, operspec, linearize, set
1-47

set
1setPurpose Set properties of linearization I/Os and operating points

Graphical
Interface

As an alternative to the set function, set properties of linearization I/Os and
operating points in the Simulink Control Design GUI. See “Inspecting Analysis
I/Os” on page 3-15 and “Specifying Operating Points” on page 3-18.

Syntax V = set(ob)
set(ob,'PropertyName',val)
ob.PropertyName=val

Description set(ob) displays all editable properties of the object, ob, which can be a
linearization I/O object, an operating point object, or an operating point
specification object. Create ob using findop, getlinio, linio, operpoint, or
operspec.

set(ob,'PropertyName',val) sets the property, PropertyName, of the object,
ob, to the value, val. The object, ob, can be a linearization I/O object, an
operating point object, or an operating point specification object. Create ob
using findop, getlinio, linio, operpoint, or operspec.

ob.PropertyName=val is an alternative notation for assigning the value, val,
to the property, PropertyName, of the object, ob. The object, ob, can be a
linearization I/O object, an operating point object, or an operating point
specification object. Create ob using findop, getlinio, linio, operpoint, or
operspec.

Examples Create an operating point object for the Simulink model, magball.

op_cond=operpoint('magball');

Use the set function to get a list of all editable properties of this object.

set(op_cond)

This returns the properties of op_cond.

ans =
 Model: {}
 States: {}
 Inputs: {}
 Time: {}
1-48

set
To set the value of a particular property of op_cond, provide the property name
and the desired value of this property as arguments to set. For example, to
change the name of the model associated with the operating point object from
'magball' to 'Magnetic Ball', type

set(op_cond,'Model','Magnetic Ball')

To view the property value and verify that the change was made type

op_cond.Model

which returns

ans =
Magnetic Ball

Since op_cond is a structure, you can set any properties or fields using
dot-notation. First produce a list of properties of the second States object
within op_cond.

set(op_cond.States(2))

ans =
 Nx: {}
 Block: {}
 x: {}
 Description: {}

Now, use dot-notation to set the x property to 8.

op_cond.States(2).x=8;

To view the property and verify that the change was made, type

op_cond.States(2)

which displays

(1.) magball/Magnetic Ball Plant/Current
 x: 8

 See Also findop, get, linio, operpoint, operspec, setlinio
1-49

setlinio
1setlinioPurpose Assign I/O settings to Simulink model

Graphical
Interface

As an alternative to the setlinio function, edit linearization I/Os in the
Analysis I/Os panel of the Linearizations node within the Simulink Control
Design GUI. See “Inspecting Analysis I/Os” on page 3-15.

Syntax oldio=setlinio('sys',io)

Description oldio=setlinio('sys',io) assigns the settings in the vector of linearization
I/O objects, io, to the Simulink model, sys, where they are represented by
annotations on the signal lines. Use the function getlinio or linio to create
the linearization I/O objects. You can save I/O objects to disk in a MAT-file and
use them later to restore linearization settings in a model.

Example Before assigning I/O settings to a Simulink model using setlinio, you must
create a vector of I/O objects representing linearization annotations, such as
input points or output points, on a Simulink model.

Open the Simulink model magball by typing

magball

at the MATLAB prompt. Right-click the signal line between the Magnetic Ball
Plant and the Controller. Select Linearization Points -> Output Point from
the menu to place an output point on this signal line. A small arrow pointing
away from a small circle just above the signal line represents the output point.
Right-click the signal line after the Magnetic Ball Plant. Select Linearization
Points -> Output Point from the menu to place another output point on this
signal line. The model diagram should now look like that in the following
figure.
1-50

setlinio
Create an I/O object with the getlinio function.

io=getlinio('magball')

Make changes to io by editing the object or by using the set function. For
example:

io(1).Type='in';
io(2).OpenLoop='on';

Assign the new settings in io to the model diagram.

oldio=setlinio('magball',io)

This returns the old I/O settings (that have been replaced by the settings in io).

Output Points
1-51

setlinio
 Linearization IOs:

Block magball/Controller, Port 1 is marked with the following
properties:
 - An Output Measurement
 - No Loop Opening

Block magball/Magnetic Ball Plant, Port 1 is marked with the
following properties:
 - An Output Measurement
 - No Loop Opening

The model diagram should now look like that in the following figure.
1-52

setlinio
See Also get, getlinio, linio, set

Input Point Open Loop

Linearization Annotations
1-53

setxu
1setxuPurpose Set states and inputs in operating points

Graphical
Alternative

As an alternative to the setxu function, set states and inputs of operating
points with the Simulink Control Design GUI. See “Importing Operating
Points” on page 3-27 for more information.

Syntax op_new=setxu(op_point,x,u)

Description op_new=setxu(op_point,x,u) sets the states and inputs in the operating
point, op_point, with the values in x and u. A new operating point containing
these values, op_new, is returned. The variable x can be a vector or a structure
with the same format as those returned from a Simulink simulation. The
variable u can be a vector. Both x and u can be extracted from another operating
point object with the getxu function.

Example Open the Simulink model F14 by typing f14 at the command line. Select
Simulation -> Configuration Parameters -> Data Import/Export. In the
Save to workspace panel, select Final states. In the Save options panel,
select Structure from Format. This will save the final states of the model to
the workspace after a simulation.

Start the simulation. After it has run, a new variable, xFinal, should be in the
workspace. This variable is a structure with two properties, time and signals.

Create an operating point object for F14 by typing

op_point=operpoint('f14')

Note that all states are initially set to 0. Set the states in this object to be the
values in xFinal. Set the input to be 9.

newop=setxu(op_point,xFinal,9)

The new operating point is displayed

 Operating Point for the Model f14.
 (Time-Varying Components Evaluated at time t=0)

States:

(1.) f14/Actuator Model
1-54

setxu
 x: -0.032
(2.) f14/Aircraft Dynamics Model/Transfer Fcn.1
 x: 0.56
(3.) f14/Aircraft Dynamics Model/Transfer Fcn.2
 x: 678
(4.) f14/Controller/Alpha-sensor Low-pass Filter
 x: 0.392
(5.) f14/Controller/Pitch Rate Lead Filter
 x: 0.133
(6.) f14/Controller/Proportional plus integral compensator
 x: 0.166
(7.) f14/Controller/Stick Prefilter
 x: 0.1
(8.) f14/Dryden Wind Gust Models/Q-gust model
 x: 0.114
(9.) f14/Dryden Wind Gust Models/W-gust model
 x: 0.46
 x: -2.05

Inputs:

(1.) f14/u
 u: 9

See Also getxu, initopspec, operpoint, operspec
1-55

update
1updatePurpose Update operating point object with structural changes in model

Graphical
Alternative

As an alternative to the update function, update operating point objects with
the Sync with Model button in the Simulink Control Design GUI. See
“Specifying Operating Points” on page 3-18 for more information.

Syntax update(op)

Description update(op) updates an operating point object, op, to reflect any changes in the
associated Simulink model, such as states being added or removed.

Example Open the magball model

magball

Create an operating point object for the model.

op=operpoint('magball')

This returns

 Operating Point for the Model magball.
 (Time-Varying Components Evaluated at time t=0)

States:

(1.) magball/Controller/Controller
 x: 0
 x: 0
(2.) magball/Magnetic Ball Plant/Current
 x: 7
(3.) magball/Magnetic Ball Plant/dhdt
 x: 0
(4.) magball/Magnetic Ball Plant/height
 x: 0.05

Inputs: None

Add an Integrator block to the model, as shown in the following figure.
1-56

update
Update the operating point to include this new state.

update(op)

The new operating point is shown below.

 Operating Point for the Model magball.
 (Time-Varying Components Evaluated at time t=0)

States:

(1.) magball/Controller/Controller
 x: 0
 x: 0
(2.) magball/Magnetic Ball Plant/Current
 x: 7
(3.) magball/Magnetic Ball Plant/dhdt
 x: 0
1-57

update
(4.) magball/Magnetic Ball Plant/height
 x: 0.05
(5.) magball/Integrator
 x: 0

Inputs: None

See Also operpoint, operspec
1-58

2

Block Reference

Blocks — Alphabetical List (p. 2-2) A list of available blocks, sorted alphabetically

2

2-2

Blocks — Alphabetical List 2

This section contains block reference pages listed alphabetically.

Trigger-Based Operating Point Snapshot
2Trigger-Based Operating Point SnapshotPurpose Generate operating points and/or linearizations at triggered events

Library Simulink Control Design

Description

Attach this block to a signal in a model when you want to take a snapshot of
the system’s operating point at triggered events such as when the signal
crosses zero or when the signal sends a function call. You can also perform a
linearization at these events. To extract the operating point or perform the
linearization you need to simulate the model using either the findop or
linearize functions, or the simulation snapshots option in the Control and
Estimation Tools Manager.

Choose the trigger type in the Block Parameters dialog box, as shown below.
The possible trigger types are

• rising: the signal crosses zero while increasing

• falling: the signal crosses zero while decreasing

• either: the signal crosses zero while either increasing or decreasing

• function-call: the signal send a function call

See Also findop, linearize
2-3

Trigger-Based Operating Point Snapshot
2-4

Index
A
addoutputspec function 1-5

C
copy function 1-8

F
findop function 1-10

G
get function 1-16
getlinio function 1-18
getlinplant function 1-22
getxu function 1-24

I
initopspec function 1-27

L
linearize function 1-30
linio function 1-35
linoptions function 1-37

O
operpoint function 1-40
operspec function 1-43

S
set function 1-48
setlinio function 1-50
setxu function 1-54
U
update function 1-56
Index-1

Index

Ind
ex-2

	Function Reference
	Functions — By Category
	Linearization Analysis I/Os
	Operating Points
	Linearization

	Functions — Alphabetical List
	addoutputspec
	copy
	findop
	get
	getlinio
	getlinplant
	getxu
	initopspec
	linearize
	linio
	linoptions
	operpoint
	operspec
	set
	setlinio
	setxu
	update

	Block Reference
	Blocks — Alphabetical List
	Trigger-Based Operating Point Snapshot

	Index

